Publications

2022

Karimi, Davood, and Ali Gholipour. (2022) 2022. “Diffusion Tensor Estimation With Transformer Neural Networks”. Artificial Intelligence in Medicine 130: 102330. https://doi.org/10.1016/j.artmed.2022.102330.

Diffusion tensor imaging (DTI) is a widely used method for studying brain white matter development and degeneration. However, standard DTI estimation methods depend on a large number of high-quality measurements. This would require long scan times and can be particularly difficult to achieve with certain patient populations such as neonates. Here, we propose a method that can accurately estimate the diffusion tensor from only six diffusion-weighted measurements. Our method achieves this by learning to exploit the relationships between the diffusion signals and tensors in neighboring voxels. Our model is based on transformer networks, which represent the state of the art in modeling the relationship between signals in a sequence. In particular, our model consists of two such networks. The first network estimates the diffusion tensor based on the diffusion signals in a neighborhood of voxels. The second network provides more accurate tensor estimations by learning the relationships between the diffusion signals as well as the tensors estimated by the first network in neighboring voxels. Our experiments with three datasets show that our proposed method achieves highly accurate estimations of the diffusion tensor and is significantly superior to three competing methods. Estimations produced by our method with six diffusion-weighted measurements are comparable with those of standard estimation methods with 30-88 diffusion-weighted measurements. Hence, our method promises shorter scan times and more reliable assessment of brain white matter, particularly in non-cooperative patients such as neonates and infants.

2021

Sui, Yao, Onur Afacan, Camilo Jaimes, Ali Gholipour, and Simon Warfield. (2021) 2021. “Gradient-Guided Isotropic MRI Reconstruction from Anisotropic Acquisitions”. IEEE Trans Comput Imaging 7: 1240-53. https://doi.org/10.1109/tci.2021.3128745.
The trade-off between image resolution, signal-to-noise ratio (SNR), and scan time in any magnetic resonance imaging (MRI) protocol is inevitable and unavoidable. Super-resolution reconstruction (SRR) has been shown effective in mitigating these factors, and thus, has become an important approach in addressing the current limitations of MRI. In this work, we developed a novel, image-based MRI SRR approach based on anisotropic acquisition schemes, which utilizes a new gradient guidance regularization method that guides the high-resolution (HR) reconstruction via a spatial gradient estimate. Further, we designed an analytical solution to propagate the spatial gradient fields from the low-resolution (LR) images to the HR image space and exploited these gradient fields over multiple scales with a dynamic update scheme for more accurate edge localization in the reconstruction. We also established a forward model of image formation and inverted it along with the proposed gradient guidance. The proposed SRR method allows subject motion between volumes and is able to incorporate various acquisition schemes where the LR images are acquired with arbitrary orientations and displacements, such as orthogonal and through-plane origin-shifted scans. We assessed our proposed approach on simulated data as well as on the data acquired on a Siemens 3T MRI scanner containing 45 MRI scans from 14 subjects. Our experimental results demonstrate that our approach achieved superior reconstructions compared to state-of-the-art methods, both in terms of local spatial smoothness and edge preservation, while, in parallel, at reduced, or at the same cost as scans delivered with direct HR acquisition.
Sui, Yao, Onur Afacan, Ali Gholipour, and Simon Warfield. 2021. “MRI Super-Resolution Through Generative Degradation Learning”. Med Image Comput Comput Assist Interv 12906: 430-40. https://doi.org/10.1007/978-3-030-87231-1_42.
Spatial resolution plays a critically important role in MRI for the precise delineation of the imaged tissues. Unfortunately, acquisitions with high spatial resolution require increased imaging time, which increases the potential of subject motion, and suffers from reduced signal-to-noise ratio (SNR). Super-resolution reconstruction (SRR) has recently emerged as a technique that allows for a trade-off between high spatial resolution, high SNR, and short scan duration. Deconvolution-based SRR has recently received significant interest due to the convenience of using the image space. The most critical factor to succeed in deconvolution is the accuracy of the estimated blur kernels that characterize how the image was degraded in the acquisition process. Current methods use handcrafted filters, such as Gaussian filters, to approximate the blur kernels, and have achieved promising SRR results. As the image degradation is complex and varies with different sequences and scanners, handcrafted filters, unfortunately, do not necessarily ensure the success of the deconvolution. We sought to develop a technique that enables accurately estimating blur kernels from the image data itself. We designed a deep architecture that utilizes an adversarial scheme with a generative neural network against its degradation counterparts. This design allows for the SRR tailored to an individual subject, as the training requires the scan-specific data only, i.e., it does not require auxiliary datasets of high-quality images, which are practically challenging to obtain. With this technique, we achieved high-quality brain MRI at an isotropic resolution of 0.125 cubic mm with six minutes of imaging time. Extensive experiments on both simulated low-resolution data and clinical data acquired from ten pediatric patients demonstrated that our approach achieved superior SRR results as compared to state-of-the-art deconvolution-based methods, while in parallel, at substantially reduced imaging time in comparison to direct high-resolution acquisitions.
Wang, Lulu, Jinglong Du, Ali Gholipour, Huazheng Zhu, Zhongshi He, and Yuanyuan Jia. 2021. “3D dense convolutional neural network for fast and accurate single MR image super-resolution”. Comput Med Imaging Graph 93: 101973. https://doi.org/10.1016/j.compmedimag.2021.101973.
Super-resolution (SR) MR image reconstruction has shown to be a very promising direction to improve the spatial resolution of low-resolution (LR) MR images. In this paper, we presented a novel MR image SR method based on a dense convolutional neural network (DDSR), and its enhanced version called EDDSR. There are three major innovations: first, we re-designed dense modules to extract hierarchical features directly from LR images and propagate the extracted feature maps through dense connections. Therefore, unlike other CNN-based SR MR techniques that upsample LR patches in the initial phase, our methods take the original LR images or patches as input. This effectively reduces computational complexity and speeds up SR reconstruction. Second, a final deconvolution filter in our model automatically learns filters to fuse and upscale all hierarchical feature maps to generate HR MR images. Using this, EDDSR can perform SR reconstructions at different upscale factors using a single model with one stride fixed deconvolution operation. Third, to further improve SR reconstruction accuracy, we exploited a geometric self-ensemble strategy. Experimental results on three benchmark datasets demonstrate that our methods, DDSR and EDDSR, achieved superior performance compared to state-of-the-art MR image SR methods with less computational load and memory usage.
Machado-Rivas, Fedel, Onur Afacan, Shadab Khan, Bahram Marami, Clemente Velasco-Annis, Hart Lidov, Simon Warfield, Ali Gholipour, and Camilo Jaimes. 2021. “Spatiotemporal changes in diffusivity and anisotropy in fetal brain tractography”. Hum Brain Mapp 42 (17): 5771-84. https://doi.org/10.1002/hbm.25653.
Population averaged diffusion atlases can be utilized to characterize complex microstructural changes with less bias than data from individual subjects. In this study, a fetal diffusion tensor imaging (DTI) atlas was used to investigate tract-based changes in anisotropy and diffusivity in vivo from 23 to 38 weeks of gestational age (GA). Healthy pregnant volunteers with typically developing fetuses were imaged at 3 T. Acquisition included structural images processed with a super-resolution algorithm and DTI images processed with a motion-tracked slice-to-volume registration algorithm. The DTI from individual subjects were used to generate 16 templates, each specific to a week of GA; this was accomplished by means of a tensor-to-tensor diffeomorphic deformable registration method integrated with kernel regression in age. Deterministic tractography was performed to outline the forceps major, forceps minor, bilateral corticospinal tracts (CST), bilateral inferior fronto-occipital fasciculus (IFOF), bilateral inferior longitudinal fasciculus (ILF), and bilateral uncinate fasciculus (UF). The mean fractional anisotropy (FA) and mean diffusivity (MD) was recorded for all tracts. For a subset of tracts (forceps major, CST, and IFOF) we manually divided the tractograms into anatomy conforming segments to evaluate within-tract changes. We found tract-specific, nonlinear, age related changes in FA and MD. Early in gestation, these trends appear to be dominated by cytoarchitectonic changes in the transient white matter fetal zones while later in gestation, trends conforming to the progression of myelination were observed. We also observed significant (local) heterogeneity in within-tract developmental trajectories for the CST, IFOF, and forceps major.
Karimi, Davood, Camilo Jaimes, Fedel Machado-Rivas, Lana Vasung, Shadab Khan, Simon Warfield, and Ali Gholipour. 2021. “Deep learning-based parameter estimation in fetal diffusion-weighted MRI”. Neuroimage 243: 118482. https://doi.org/10.1016/j.neuroimage.2021.118482.
Diffusion-weighted magnetic resonance imaging (DW-MRI) of fetal brain is challenged by frequent fetal motion and signal to noise ratio that is much lower than non-fetal imaging. As a result, accurate and robust parameter estimation in fetal DW-MRI remains an open problem. Recently, deep learning techniques have been successfully used for DW-MRI parameter estimation in non-fetal subjects. However, none of those prior works has addressed the fetal brain because obtaining reliable fetal training data is challenging. To address this problem, in this work we propose a novel methodology that utilizes fetal scans as well as scans from prematurely-born infants. High-quality newborn scans are used to estimate accurate maps of the parameter of interest. These parameter maps are then used to generate DW-MRI data that match the measurement scheme and noise distribution that are characteristic of fetal data. In order to demonstrate the effectiveness and reliability of the proposed data generation pipeline, we used the generated data to train a convolutional neural network (CNN) to estimate color fractional anisotropy (CFA). We evaluated the trained CNN on independent sets of fetal data in terms of reconstruction accuracy, precision, and expert assessment of reconstruction quality. Results showed significantly lower reconstruction error (n=100,p<0.001) and higher reconstruction precision (n=20,p<0.001) for the proposed machine learning pipeline compared with standard estimation methods. Expert assessments on 20 fetal test scans showed significantly better overall reconstruction quality (p<0.001) and more accurate reconstruction of 11 regions of interest (p<0.001) with the proposed method.
Balagurunathan, Yoganand, Andrew Beers, Michael Mcnitt-Gray, Lubomir Hadjiiski, Sandy Napel, Dmitry Goldgof, Gustavo Perez, et al. 2021. “Lung Nodule Malignancy Prediction in Sequential CT Scans: Summary of ISBI 2018 Challenge”. IEEE Trans Med Imaging 40 (12): 3748-61. https://doi.org/10.1109/TMI.2021.3097665.
Lung cancer is by far the leading cause of cancer death in the US. Recent studies have demonstrated the effectiveness of screening using low dose CT (LDCT) in reducing lung cancer related mortality. While lung nodules are detected with a high rate of sensitivity, this exam has a low specificity rate and it is still difficult to separate benign and malignant lesions. The ISBI 2018 Lung Nodule Malignancy Prediction Challenge, developed by a team from the Quantitative Imaging Network of the National Cancer Institute, was focused on the prediction of lung nodule malignancy from two sequential LDCT screening exams using automated (non-manual) algorithms. We curated a cohort of 100 subjects who participated in the National Lung Screening Trial and had established pathological diagnoses. Data from 30 subjects were randomly selected for training and the remaining was used for testing. Participants were evaluated based on the area under the receiver operating characteristic curve (AUC) of nodule-wise malignancy scores generated by their algorithms on the test set. The challenge had 17 participants, with 11 teams submitting reports with method description, mandated by the challenge rules. Participants used quantitative methods, resulting in a reporting test AUC ranging from 0.698 to 0.913. The top five contestants used deep learning approaches, reporting an AUC between 0.87 - 0.91. The team's predictor did not achieve significant differences from each other nor from a volume change estimate (p =.05 with Bonferroni-Holm's correction).
Sui, Yao, Onur Afacan, Ali Gholipour, and Simon Warfield. (2021) 2021. “Fast and High-Resolution Neonatal Brain MRI Through Super-Resolution Reconstruction From Acquisitions With Variable Slice Selection Direction”. Front Neurosci 15: 636268. https://doi.org/10.3389/fnins.2021.636268.
The brain of neonates is small in comparison to adults. Imaging at typical resolutions such as one cubic mm incurs more partial voluming artifacts in a neonate than in an adult. The interpretation and analysis of MRI of the neonatal brain benefit from a reduction in partial volume averaging that can be achieved with high spatial resolution. Unfortunately, direct acquisition of high spatial resolution MRI is slow, which increases the potential for motion artifact, and suffers from reduced signal-to-noise ratio. The purpose of this study is thus that using super-resolution reconstruction in conjunction with fast imaging protocols to construct neonatal brain MRI images at a suitable signal-to-noise ratio and with higher spatial resolution than can be practically obtained by direct Fourier encoding. We achieved high quality brain MRI at a spatial resolution of isotropic 0.4 mm with 6 min of imaging time, using super-resolution reconstruction from three short duration scans with variable directions of slice selection. Motion compensation was achieved by aligning the three short duration scans together. We applied this technique to 20 newborns and assessed the quality of the images we reconstructed. Experiments show that our approach to super-resolution reconstruction achieved considerable improvement in spatial resolution and signal-to-noise ratio, while, in parallel, substantially reduced scan times, as compared to direct high-resolution acquisitions. The experimental results demonstrate that our approach allowed for fast and high-quality neonatal brain MRI for both scientific research and clinical studies.
Karimi, Davood, Lana Vasung, Camilo Jaimes, Fedel Machado-Rivas, Shadab Khan, Simon Warfield, and Ali Gholipour. 2021. “A machine learning-based method for estimating the number and orientations of major fascicles in diffusion-weighted magnetic resonance imaging”. Med Image Anal 72: 102129. https://doi.org/10.1016/j.media.2021.102129.
Accurate modeling of diffusion-weighted magnetic resonance imaging measurements is necessary for accurate brain connectivity analysis. Existing methods for estimating the number and orientations of fascicles in an imaging voxel either depend on non-convex optimization techniques that are sensitive to initialization and measurement noise, or are prone to predicting spurious fascicles. In this paper, we propose a machine learning-based technique that can accurately estimate the number and orientations of fascicles in a voxel. Our method can be trained with either simulated or real diffusion-weighted imaging data. Our method estimates the angle to the closest fascicle for each direction in a set of discrete directions uniformly spread on the unit sphere. This information is then processed to extract the number and orientations of fascicles in a voxel. On realistic simulated phantom data with known ground truth, our method predicts the number and orientations of crossing fascicles more accurately than several classical and machine learning methods. It also leads to more accurate tractography. On real data, our method is better than or compares favorably with other methods in terms of robustness to measurement down-sampling and also in terms of expert quality assessment of tractography results.
Karimi, Davood, Lana Vasung, Camilo Jaimes, Fedel Machado-Rivas, Simon Warfield, and Ali Gholipour. 2021. “Learning to Estimate the Fiber Orientation Distribution Function from Diffusion-Weighted MRI”. Neuroimage, 118316. https://doi.org/10.1016/j.neuroimage.2021.118316.
Estimation of white matter fiber orientation distribution function (fODF) is the essential first step for reliable brain tractography and connectivity analysis. Most of the existing fODF estimation methods rely on sub-optimal physical models of the diffusion signal or mathematical simplifications, which can impact the estimation accuracy. In this paper, we propose a data-driven method that avoids some of these pitfalls. Our proposed method is based on a multilayer perceptron that learns to map the diffusion-weighted measurements, interpolated onto a fixed spherical grid in the q space, to the target fODF. Importantly, we also propose methods for synthesizing reliable simulated training data. We show that the model can be effectively trained with simulated or real training data. Our phantom experiments show that the proposed method results in more accurate fODF estimation and tractography than several competing methods including the multi-tensor model, Bayesian estimation, spherical deconvolution, and two other machine learning techniques. On real data, we compare our method with other techniques in terms of accuracy of estimating the ground-truth fODF. The results show that our method is more accurate than other methods, and that it performs better than the competing methods when applied to under-sampled diffusion measurements. We also compare our method with the Sparse Fascicle Model in terms of expert ratings of the accuracy of reconstruction of several commissural, projection, association, and cerebellar tracts. The results show that the tracts reconstructed with the proposed method are rated significantly higher by three independent experts. Our study demonstrates the potential of data-driven methods for improving the accuracy and robustness of fODF estimation.